Rapid-releasing of HI-6 via brain-targeted mesoporous silica nanoparticles for nerve agent detoxification.
نویسندگان
چکیده
The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration.
منابع مشابه
Preparation and Characterization of Rifampin Loaded Mesoporous Silica Nanoparticles as a Potential System for Pulmonary Drug Delivery
The goal of this research is to determine the feasibility of loading rifampin into mesoporous silica nanoparticles. Rifampin was selected as a model lipophilic molecule since it is a well-documented and much used anti tuberculosis drug. The mesoporous silica nanoparticles were prepared by using Tetraethyl ortho silicate and cetyltrimethyl ammonium bromide (as surfactant); The prepared nanoparti...
متن کاملPreparation and Characterization of Rifampin Loaded Mesoporous Silica Nanoparticles as a Potential System for Pulmonary Drug Delivery
The goal of this research is to determine the feasibility of loading rifampin into mesoporous silica nanoparticles. Rifampin was selected as a model lipophilic molecule since it is a well-documented and much used anti tuberculosis drug. The mesoporous silica nanoparticles were prepared by using Tetraethyl ortho silicate and cetyltrimethyl ammonium bromide (as surfactant); The prepared nanoparti...
متن کاملApplication of mesoporous silica nanoparticles for drug delivery to cancer cells
Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...
متن کاملMultifunctional Enveloped Mesoporous Silica Nanoparticles for Subcellular Co-delivery of Drug and Therapeutic Peptide
A multifunctional enveloped nanodevice based on mesoporous silica nanoparticle (MSN) was delicately designed for subcellular co-delivery of drug and therapeutic peptide to tumor cells. Mesoporous silica MCM-41 nanoparticles were used as the core for loading antineoplastic drug topotecan (TPT). The surface of nanoparticles was decorated with mitochondria-targeted therapeutic agent (Tpep) contain...
متن کاملEnhanced Solubility and Bioavailability of Apigenin via Preparation of Solid Dispersions of Mesoporous Silica Nanoparticles
In this study, a novel mesoporous silica nanoparticles drug carrier contributes to improving the solubility, dissolution, and the oral bioavailability of apigenin (AP). The apigenin of solid dispersion of mesoporous silica nanoparticles (AP-MSN) was prepared by physical absorption method and also, in-vitro drug release and in-vivo bioavailability performance were evaluated. Based on its solubil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 8 18 شماره
صفحات -
تاریخ انتشار 2016